
Revisiting
the Anything Pattern

Stefan Tramm et. al.
Netcetera
403

2

AGENDA

> The Anything data container
> Applications of the Anything
> Implementation Details
> Enhancements for Database Access
> “data as code”
> Existing Alternatives

3

AGENDA

> The Anything data container
> Applications of the Anything Pattern
> Implementation Details
> Enhancements for Database Access
> “data as code”
> Existing Alternatives

4

Intro

The Anything design pattern provides a generic structured data
container that is useful as universal (catch-all) operation parameter.
In addition Anythings are well-suited as a flexible means of storing,
retrieving and transmitting structured data values. This makes
Anything an ideal implementation technique for configuration data.

Peter Sommerlad and Marcel Rüedi, 1998

5

Historic Evolvement

> early 90’s: ET++, a C++ based framework, which introduces Anything
– evolved into SNiFF+

> late 90’s: the Anything found its way into the WebDisplay Framework
> Marcel Rüedi et al. ported the Anything from C++ to Java 1.1 (LGPL)
> some years of silence
> Java Anything now public available on Google Code (2006)
> Integration of the Anything pattern into an enterprise level data processing

system in 2006, for
– run time configuration
– parameter passing
– unit test data
– simple database access

6

Essence

> The Anything implements a self describing, recursive data structure, eg:
– it supports simple type values: Boolean, Long, Float, String
– it supports (nested) sequences of values (‘vectors’ contain ‘slots’)
– values can carry an optional key name (called ‘slot name’)

{
/name “joe user”
/age 25
/comments {

“this is a \”string\””
“this_is_a_multiline\nstring”

}
/flag True
comments are also possible

}

7

AGENDA

> The Anything data container
> Applications of the Anything Pattern
> Implementation Details
> Enhancements for Database Access
> “data as code”
> Existing Alternatives

8

Anything Pattern

> context: you implement a framework, where users/developers can supply new
subclasses

> problem: how to provide method parameters (or object data attributes) that fit
the need for future subclasses?

> problem: how to make different subsystems compile-time independent (enable
loose coupling)?

> problem: how to provide a generic configuration or communication data
structure that is also easily extensible?

> elaboration:
– pass an open set of structured (and typed) data to an (abstract) operation
– easy to use internal and external representation
– avoid dependency on yet another framework

> solution: use the Anything

9

Applications of the Anything: Configuration data

> the Anything stores a tree nodes
– roughly the same as XML, but…
– nodes carry a type, and can be easily coerced to another representation
– a nicer and simpler API than DOM or SAX
– one Anything class file instead of a whole framework
– more concise external representation

> so embrace the features a tree can give you:
– put structured parameters in files or into a DB (terse string representation)
– use it for mock data input (unit test configuration)
– compare test input and test results: the serialization is stable (insertion

order), so you can compare easily (normal hashtables cant provide this)
– a tree is more than simple property list key-value-pairs

10

Applications of the Anything: DOM

> the DOM for ‘the rest of us’
– every Anything can be mapped directly into XML
– most XML can be mapped into an Anything in a generic way

{
/name “joe user”
/age 25
/comments {

“this is a \”string\””
“this_is_also_a_string”

}
/flag True
remark

}

<root>
<name>joe user</name>
<age>25</age>
<comments>

this is a “string”
</commtents>
<comments>

this_is_also_a_string
</comments>
<flag>True</flag>
<!-- remark -->

</root>

11

AGENDA

> The Anything data container
> Applications of the Anything Pattern
> Implementation Details
> Enhancements for Database Access
> “data as code”
> Existing Alternatives

12

API I

> Constructors
– Anything a = new Anything(); // empty Any
– Anything b = new Anything(1234); // an Any containing a Long
– Anything c = new Anything(b); // an Any containing another Any

> Setters
– a.put(“slotname”, “value”); // append or modify a slot
– a.put(4, 2.3); // put at slot #4 in ‘a’ the double ‘2.3’ (slot numbers start at 0)
– a.append(True); // append an unnamed slot to ‘a’ containing the value True

13

API II

> Getters
– Anything a = b.get(0); // read the slot #0 from Any b
– Anything a = b.get(“foo”); // read the slot named “foo”
– String s = b.get(“foo”).asString(“def”); // read the slot named “foo” and

convert the Anything into a String; return “def” if slot “foo” does not
exist

– long s = b.get(“foo”).asLong(-1); // this works either, because the Any
casts always to the requested target type or returns the given default

– int type = b.getType(); // returns an int describing the real type of the
slot

14

API III

> Predicates
– bool b = a.isNull(); // do we have a Null Anything?

(new Anything()).isNull() == True

– bool b = a.isDefined(“foo”); // does a contain a slot named “foo”?
> Helpers

– int s = a.getSize(); // return the number of slots
– String s = a.slotName(1); // return the name of slot #1
– int i = a.findValue(“something”); // return the slot index of the slot

which equals to “something”

15

API IV

> Serialization
– a.Print(os); // serialize Anything a in a human readable form onto os
– a.PrintTerse(os); // serialize Anything a as one terse line onto os (which is

nice for logging)
– a.write(“name.any”); // serialize Anything a into file “name.any”
– Slots are serialized in insertion order! (you will love this)

> Deserialization
– Anything a = (new Anything()).load(is); // load from input stream or reader
– Anything a = Anything.read(is); // static method to deserialize from stream or

reader
– Anything a = Anything.read(“name.any”); // read from file “name.any”
– Anything a = Anything.create(“{/k foobar}”); // create from string

16

Implementation Details

> Every Anything has three attributes:
– a tag describing its content/type
– an object containing the contents (the slots vector or a simple object)
– an optional hash table to store slot names

public class Anything extends Object implements Serializable {
public static final int eNull = 0;
public static final int eLong = 1;
...
public static final int eVector = 4;
...
Object fContents;
Hashtable fDict;
int fTag;
...

17

Implementation Details

> Construction and automatic vectorization:

public Anything(int i) { // all constructors look equally
fTag = eLong;
fContents = new Long(i);

}

public void append(Anything value) {
if (fTag != eVector) { // if not already a vector
vectorize(); // make it so

}
int index = size();
Vector v = (Vector) fContents;
v.setSize(index + 1); // make room for a new slot
v.setElementAt(value, index); // store value in slot

}

18

Implementation Details

> current implementation is based on Java 1.1
– simple vector, hashtable and parser are used internally
– multithreaded performs is not as good as possible, either use unthreaded

containers or more modern ones from java.util.concurrent
– the two containers may be replaced by an ordered tree implementation

> a read-only Anything is missing
– an immutable after construction Anything
– now ill behaving programs may change configuration data ‘on-the-fly’
– hard to diagnose errors

19

AGENDA

> The Anything data container
> Applications of the Anything Pattern
> Implementation Details
> Enhancements for Database Access
> “data as code”
> Existing Alternatives

20

Support for the Builder pattern

> Setters return this, which makes cascading of setters possible
> this allows a more natural construction of non trivial Anythings:

Anything rows = new Anything();
for (int c = 0; c < 100; c++) {

rows.get(c).put("EMPNO", 8000+c) // long/number
.put("ENAME", "bulk") // string/varchar2
.put("DEPTNO", 20) // long/number
.put("HIREDATE", new Date(// datetime

System.currentTimeMillis()));
}
r = AnyDAO.insertRows(connection, "EMP", rows);

> astonished? no?
– think about, what get() has to do, to make this nice code work…

21

Database Access

> Anything as Data Transfer Object (DTO) / Value Object (VO)
– it contains no business logic, only storage and retrieval
– it supports sets (with its vector and hashtable)
– it allows introspection at runtime (no code generation at compile needed)

> extension 1: more essential data types to support SQL
– BigDecimal
– Date

> extension 2: Data Access Object (DAO) aka JDBC access functions
– AnyDAO implements: query(), insertRows(), statement()
– query supports returning the complete result set
– and invoking a callback handler for every row (streaming)
– AnyDAO is not DAO in the JEE sense but a thin JDBC wrapper

22

DAO example: select & insert

> a simple query, demonstrating the self inspection possibilities:

Anything res = AnyDAO.query(con, "SELECT * FROM EMP");

BigDecimal sum = new BigDecimal(0);
for (int i = 0; i < res.get("Data").size(); i++) {

sum = sum.add(res.get("Data").get(i).get("SAL")
.asBigDecimal(0));

}
System.out.println("Salary sum is “ + sum.toString());

> insertRows() was shown before

23

DAO example: statement

> you can reuse results from a select as input for a JDBC statement, eg. an
update:
Anything inp = AnyDAO.query(connection,
"SELECT * FROM EMP WHERE EMPNO = 1234");
// returns all attributes
inp.get(“Data”).get(0)

.put(“SAL”, 10000) // change attributes

.put(“ENAME”, “Stefan”);

Anything res = AnyDAO.statement(connection,
new String[] {
"UPDATE EMP SET ENAME=?, SAL=? WHERE EMPNO=?",
"ENAME", “SAL", "EMPNO“
}, inp);

// only the slots named "ENAME", “SAL", "EMPNO“ of inp
// are used, the other slots will be ignored

24

AGENDA

> The Anything data container
> Appliances of the Anything Pattern
> Implementation Details
> Enhancements for Database Access
> “data as code”
> Existing Alternatives

25

“data as code”

> as already mentioned, the Anything stores trees
> so you can store an AST (abstract syntax tree) in one Anything
> the step from a static AST to execution is simple

– one eval() method, containing a huge switch (result: a DSL)
– example: a simple Lisp interpreter based on Anything

based on the classic paper by Steele, 1973 and Graham, 2001

> also included in source tree as ALang.java

> the scripting language Lua uses hash tables as main internal data structure
– its implementation shows the convenience of tables in contrast to lists

> but: Anything does not mean Everything

26

eval() method
// see also http://paulgraham.com/rootsoflisp.html

public Anything eval(Anything e, Anything a) {

if (atom(e)==t) {

if (e.fTag==Anything.eLong || e.fTag==Anything.eDouble) return e;

return assoc(e, a);

} else if (atom(car(e))==t) { // invoke primitive

String f = car(e).asString("");

if (f.equals("quote")) return cadr(e);

if (f.equals("atom")) return atom(eval(cadr(e), a));

if (f.equals("eq")) return eq(eval(cadr(e), a),

eval(caddr(e), a));

if (f.equals("car")) return car(eval(cadr(e), a));

if (f.equals("cdr")) return cdr(eval(cadr(e), a));

if (f.equals("cons")) return cons(eval(cadr(e), a),

eval(caddr(e), a));

if (f.equals("cond")) return evcon(cdr(e), a);

if (prims.isDefined(f)) return call(f, evlis(cdr(e), a), a);

// else replace symbol with assoc

return eval(cons(assoc(car(e), a), cdr(e)), a);

} else if (caar(e).asString("").equals("label")) {

return eval(cons(caddar(e), cdr(e)),

cons(list(cadar(e), car(e)), a));

} else if (caar(e).asString("").equals("lambda")) {

return eval(caddar(e), append(pair(cadar(e),

evlis(cdr(e), a)), a));

}

return nil;

}

http://paulgraham.com/rootsoflisp.html

27

AGENDA

> The Anything data container
> Applications of the Anything Pattern
> Implementation Details
> Enhancements for Database Access
> “data as code”
> Existing Alternatives

28

Existing Alternatives I

> JSON
– many similarities: simple text representation, list and hash table containers,

long and string values
– but: serialization order of hashtables is undefined: bad for regression tests

based on textual diffs
– no support for Databases Type: BigDecimals and Date

> S-Expressions
– based on a weaker data type (list instead of vector/hash table)

constant vs. linear runtime of random access

– supports only list, strings and binary objects
– serialization format is reduced to the max; Anything has a richer and more

human readable external format

29

Existing Alternatives II

> XML provides the same as the Anything and more
– but, at a much higher price (code size, complexity, memory, runtime)
– and no typing at all (without a complex and expensive schema

checker)
– but see Mark Reinholds talk at Javaone 2006 on ‘Integrating XML

into the Java Programming Language’ (XOM)
XML newFeature(String name,

String reviewer, String time)
{
return #feature {

#id { ++nFeatures },
#name { name },
#state { "submitted" },
#reviewed {
#who { reviewer },
#when { time }

}
};

}

Anything newFeature(String name,
String reviewer, String time)

{
return

new Anything()
.get(“feature”)

.put(“id”, ++nFeatures)

.put(“name”, name)

.put(“state”, "submitted“)

.get(“reviewed”)
.put(“who”, reviewer)
.put(“when”, time);

}

Anything serialized
an example tree
{
/feature {
/id 1234
/name “Stefan”
/state "submitted"
/reviewed {
/who “Marc”
/when DATE 20070716

}
}

}

30

Existing Alternatives III

> Property lists
– only support key value pairs
– only strings as keys and values

> Database Tables
– structure/schema cannot be expanded at runtime
– expensive access
– chicken-egg problem: what if, configuration should contain the

database connection string?

31

Take home message

> replace adhoc object trees by well structured Anything trees
> use typed configuration data
> use a homogenous serialization syntax
> do not wait for a Java language extension (XOM) to use structured tree data in

your programs

> think of the Anything as ‘XML-Lite’ or ‘DOM for the rest of us’
– simpler and more concise than DOM-API
– more concise serialization format (no end-element)
– good safety / flexibility / performance compromise

– there is life outside the XML universe ;-)

32

Finis

http://code.google.com/p/java-anything/

http://code.google.com/p/java-anything/

33

Further readings

> P. Sommerlad and M. Rüedi, Do-it-yourself reflection, in EuroPLOP 98: Third European
Conference on Pattern Languages of Programming and Computing, 1998. [Online].
Available: http://hillside.net/europlop/HillsideEurope/Papers/DIY_Reflection.pdf

> R. L. Rivest, S-expressions, Internet Engineering Task Force, Internet Draft, 1997.
[Online]. Available: http://theory.lcs.mit.edu/~rivest/sexp.txt

> D. Crockford, The application/json media type for javascript object notation (JSON),
Internet Engineering Task Force, RFC 4627, Jul 2006. [Online]. Available:
http://ds.internic.net/rfc/rfc1738.txt

> M. Reinhold, XOM: Integrating XML into the Java programming language, in JavaONE
2006: Proceedings of the JavaOne Conference. (TS-3441) Sun, 2006.

> A. Weinand, E. Gamma, and R. Marty, ET++ an object oriented application framework in
C++, in OOPSLA '88: Conference proceedings on Object Oriented programming systems,
languages and applications. New York, NY, USA: ACM Press, 1988, pp. 4657.

> Kai-Uwe Mätzel, Walter Bischofberger, The Any Framework - A Pragmatic Approach to
Flexibility, USENIX COOTS Toronto, 1996. [Online]. Available:
http://www.ubilab.com/publications/print_versions/pdf/coots96.pdf

http://hillside.net/europlop/HillsideEurope/Papers/DIY_Reflection.pdf
http://theory.lcs.mit.edu/~rivest/sexp.txt
http://ds.internic.net/rfc/rfc1738.txt
http://www.ubilab.com/publications/print_versions/pdf/coots96.pdf

34

Further readings

> Data as code
– Paul Graham, 2001

http://paulgraham.com/rootsoflisp.html
– Guy L. Steele, 1973

http://repository.readscheme.org/ftp/papers/ai-lab-pubs/AIM-453.pdf

http://paulgraham.com/rootsoflisp.html
http://repository.readscheme.org/ftp/papers/ai-lab-pubs/AIM-453.pdf

Stefan Tramm http://netcetera.ch/
Jason Brazile
David Oetiker
Stefan Rufer
Stefan Ferstl
Daniel Eichhorn

Netcetera stefan.tramm@netcetera.ch

http://netcetera.ch/
mailto:stefan.tramm@netcetera.ch

