Labelling Guitar Chords

Jason Brazile

The Problem

A few years ago, I began to teach myself how to play the guitar. There were particular songs that I wanted
to play for which I was not able to find accurate transcriptions. I began listening to recordings, attempting to
figure out the notes and fingerings that were used in order to write them down. After being asked a few times
for copies of my transcriptions, I came up with a way to represent them as ASCII text files. (See Appendix A
- Representing Guitar Chords in ASCII).

Shortly after that, it became a very tedious and error prone process figuring out what the pitches were from
my guitar fingerings, and from those, attempting to determine the chord names. I started referring to a book
that cataloged thousands of guitar chords in my attempt to do this faster and more accurately. Eventually, I
decided it was time to write a program.

The Guitar Fingering Labeller or gfl is a program that reads ASCII based guitar fingerings, determines the
pitches and from that the chords represented by them. It produces a new file with the chords labelled and the
fingerings formatted nicely into rows and columns.

Example

As an example, here are the hastily typed chords used in the introduction to a song I recently transcribed:

T O B B l'lolol 6] loool5 Il ol | 4
' Tol Il Tololo I 1Toll [ I I I Il 1ol
ol llol I 10lol I1lllo I1lllo  I1IIII
T Tol I 11T 111 [ I I I [ I I I [ I I )
o o ox o o
I ran this through gf1:

$ gfl meditacao.tab
which produced this output:

a6 Bn7 E7 +5 b9 Am9 B7 b9/A
l1oll12 lololo2 Ilolol6 lloools Ilolol4
+—t—t—t—t—+ +—+ e
ol I 1ol 1Tl 1lol 1 1ol e 1 1oll
lloll  TLIIILT  I0lllo 110llo 11IIII
R R R R R R R
X 0 X X 0 x x 0 x 0

The chords were labelled, the fingerings were shifted to the top of each grid adjusting the fret number as needed,
and all unused strings were explicitly marked as not used.

Most of the time, gfl labels the chords correctly. But some chords can be labelled one of several different ways
depending on the key the song is currently in and how the chord functions harmonically with respect to the
chords that surround it. To give an example, let’s look at the middle chord above and make use of the gfl
“analyze” flag:



n = N o

)4 S )4 ~O O

s L Q> b

ARV - h=d N AN O

J J T

Fo— s
Pitches E7+5b9 Fm6/E DmT7 b5/E

Figure 1: Possible Chord Names

$ gfl -a meditacao.tab

The “analyze” flag prints out each chord in a single column and precedes it with a “comment block” that
documents the pitches and octaves determined by each string in the chord followed by an ordered list of the
guesses gfl has made for the chord name. The output is formatted this way so that a user could choose an
alternate name by “uncommenting” that name and running gfl again with the “keep names” flag.

# pitches: [E(4),-1,G#(5),D(6),F(6),C(7)]
#

# E7 +5 b9

# Fm6/E

# Dm7 b5/E

#

+
o
o’
©

+ —+ —+ —+ 0 +
+ —+ —+ 0 + — +
+
f—dto4+—4+—1

i
Mo+ —+ —+ — + — +

The information in the output above is illustrated in Figure 1. The pitches are the same even though they
appear not to be. They are merely rearranged in different octaves and/or renamed inharmonicly (e.g. G# is
the same as Ab) in order to support the naming.

In this case, gf1l came up with 3 possible names for the given chord, and it determined that E7 +5 b9 is the
most likely. As it turns out, this is the correct guess, because the chord is harmonically serving as V/ii (“five
of two”) to the immediately following Am9 chord (see Appendix C - Basic Harmony).

As previously mentioned, gfl usually guesses correctly, but this is really due to luck in the heuristic it uses to
rank its guesses, because in fact gfl isn’t currently intelligent enough to make use of harmonic context (i.e. it
doesn’t “know” that this chord is serving as V/ii) while making these guesses.

Other Features

Re-Shaping

A secondary function of gfl is to re-format the guitar chords into rows and columns using the (possibly newly
determined) names. For example, you could specify that you only wanted 3 chords per row instead of 5, and
the program would reshape the example above like this:




(o))
w
g

%
<]
BN
+
o
o
©

1
+
1
+
I
+
1

+—+—+—+0 + @

+
MoF—+ — + — 4+ — +
t—to +—+—+
+
|
Mok — ok — ok — o —
+
|
i
t—+—+—+o0
t—+— 4o +—+
+
+
|
|
t—+—+—+o+
t—+—+o +—+
i
+ — + 0 + — + — +

O+ —+—+—+—+

+ —+ —+ —+0 + =
t—+—+—+to+o©
+
1

]
1
+—+0 +—+ — +

O+ —+ —+ — + — +
MoF — 4+ — o+ — + — +
4
+—+—1:\——+o+
t—+t—to +—+
+ —+— 4+ —+0 +
i

This ability to reformat is very useful when you want to add or remove a chord. You can merely add the new
chord to the next line or extend an existing column by one chord and gfl can reshape and readjust everything.

Other Instruments/Tunings

The most unusual feature of gfl is that you can specify the tuning and number of strings that are used
when doing chord analysis. This is specified in a command line argument as a colon separated list of MIDI
note numbers corresponding to the tunings of the strings you are interested in (see [DS89]). Labelling guitar
transcriptions based on fingerings in a non-standard tuning should be no problem. And oddly enough, you
should be able to label and format mandolin fingerings like this:

$ gfl -t 55:62:69:76 sonho_meu.tab

This corresponds to the standard mandolin tuning - G, D, A, E. For another example, I believe ukulele tuning
is A, D, F#, B which you should be able to handle like this:

$ gfl -t 69:74:78:83 tiptoe.tab

What it Doesn’t Do

The feature that I am most often asked about is being able to type in the chord names for a song and have gfl
return guitar fingerings. If there were only one possible way to finger any particular chord, this would be easy
to do. However, if there were 2 possible ways to finger each particular chord, then for a song with N chords,
there would be 2V different ways to finger it that gf1 would have to consider.

Obviously, this would be not be practical for most songs. But to compound the problem, instead of 2 different
ways to finger any particular chord, there are probably an average of about 20. This puts the problem in the
realm of Artificial Intelligence).

But again assuming that gfl could actually try each possible combination looking for an “optimal” list of
fingerings, one would have to come up with an evaluation function that determined why one chord choice is
better than another in a given progression. There are many factors that could be taken into consideration in
such a decision involving both musical issues (e.g. voicings) and physical issues (e.g. your hand can only span
so many frets). These choices would have to be decided subjectively.

How it Works

The processing of gfl can be broken down into the following stages:

Input Parsing The input is parsed into 4 data structures - the header text, the trailing text, a collection of
the unique chords encountered, and a chronologically ordered list of all the chords (which references the




Chords

,,,,,, LoD Unique Chords

lyrics | happy birthday T
- R | pitches ' G, x, F#, B, E, x

index ! -1 @ - ettt
# midi notes | 59, x, 66, 71, 76, x
name ' Am¢6 } F-----—-—----- R ittt
i ’1’ T possible names ! B sus 4/G, Em9/G
yrics toyou T T TTTTT ST T T T T TS TTTTTTooS
”””” ‘T””””’** bottomnote: 7
index 1 _ T
pitches : A, x, F#, C, E, x
midi notes , 57, x, 66, 72, 76, x
|
|
|
|
|

bottom note

Figure 2: Chord Data Structures

unique chords as well as containing chord specific information such as lyrics and “kept” names - i.e. for
those times when the user disagrees with gf1’s best guess. See Figure 2 and Appendix B - Representing
Complex Data Structures in Perl)

Determination of Pitches For each of the unique chords, each pitch name and octave is determined and
stored in a human readable format. This is used when the “analyze” option has been selected or for
debugging purposes.

Determination of Possible Chord Names Each of the unique chords is permuted and processed into a
canonical form in order to be compared against a table of known chord forms in an attempt to make
matches. Each match is given a “score” based on a simple heuristic. All matches for a given chord are
sorted by that score and added to a list of possible names for that chord.

Output Formatting When it comes time to produce output, text is printed to a buffer in a tabular format
which allows for the reshaping of the text into rows and columns.

This corresponds to a the main perl subroutine as shown in Figure 3.

Input Parsing

I began publishing my transcriptions on the web and my intent was to have gfl analyze the HTML versions
of transcriptions without having to do manual editing or other pre/post processing. Because the guitar chord
parts of my transcriptions are simple ASCII text displayed verbatim, I was able to consider an input file to have
the following form:

1. Header text (optional)
2. Guitar Chords

3. Trailer text (optional)

In my case, the header text and trailer text contain HTML, but gf1 neither knows nor cares.

The transition from the “header text” section to the “guitar chords” section is determined by the initial appear-
ance of the ASCII fingering grids which may have been preceded by one line of chord names which is otherwise
impossible to differentiate from header text. For this reason, a line of lookahead is needed (see [AUTT]).




sub main
{
$lines = &lexical_scan($filename);
($header, $trailer, $chords, $uniq_chords) = &parse($lines);
if ($reshape_only){
$keep_names = 1;
Yelsed{
$pitch_tab = &init_pitches;
$uniq_chords = &add_pitches($pitch_tab, $uniq_chords);
$chord_tab = &init_chords;
$uniq_chords = &add_chord_names($pitch_tab, $chord_tab, $uniq_chords);
}
&write_out($outfilename, $header, $trailer, $chords, $uniq_chords);
}
Figure 3: Main Program Logic

The termination of the “guitar chords” section is determined by encountering at least 3 blank lines. Whatever
comes after that is considered “trailer text”.

Parsing the “guitar chords” section is slightly more challenging because I was guided by the following principles
in the representation of the chords:

e The grids should be able to represent any number of strings

e There can be any number of grids per line.

The grids may optionally be preceded by a line containing chord names.

The grids must be followed by open/dampened string usage indicators.

e A grid may optionally have lyrics underneath it that must not extend beyond the width of that grid, but
should be associated with that chord.

These principles led to the design of a finite state machine (see [AU77]) that can parse guitar chord input based
on these goals (see Figure 4).

Refer to Figure 5 to see how this state machine could be implemented in perl.

The result of the parsing stage is 4 data structures - one for the header text, 2 for the guitar chords, and one
for the trailer text. The reason there are 2 data structures to maintain information for the guitar chords, is
that some chords will be duplicated in the song and we would like to only analyze them once. However, even
though the pitches for the chord may duplicated, there may be other information associated with the chord
(e.g. lyrics) that require individual chord information to be kept. The individual chord information references
the shared chord information so there is no duplication.

Determination of Pitches

The “determination of pitches” phase is done in order to print pitch information in human readable format. The
actual pitches are stored internally as MIDI note numbers (for example, the E on the low string is represented
by the number 52). Pitch names and octaves are easily determined by divide and modulo operations as there
are 12 different pitches in an octave.




separator > chord name

Figure 4: Parsing State Machine

$state = 0;

foreach $line (@$lines){
if ($state == 0){
if ($line->{’type’} eq ’fret’){

$state = 1;
Yelsed{

}
}elsif ($state == 1){
if ($line->{’type’} eq ’finger’){

$state = 2;
Yelsif ($line->{’type’} eq ’strings’){

$state = 3;

Yelseq{
ERROR

}

}elsif ($state == 2){

if ($line->{’type’} eq ’fret’){
$state = 1;

Yelse{
ERROR

}

Figure 5: Implementing the Parsing State Machine




sub chord_lookup
{
($bottom, $the_rest, $combined) = &notes_only($chord);
$canon = &chord_canon($bottom % 12, $combined);
foreach $c (@$chord_tab){
if (&chord_compare($canon, $c->{’cnotes’})){
RECORD THIS MATCH ALONG WITH A HIGH RANK
}
}
foreach $note (@$the_rest)q{
$canon = &chord_canon($note % 12, $the_rest);
foreach $c (@$chord_tab){
if (&chord_compare($canon, $c->{’cnotes’})){
RECORD THIS MATCH ALONG WITH A LOWER RANK
+
}
}
foreach $note (@$the_rest){
$canon = &chord_canon($note % 12, $combined);
foreach $c (@$chord_tab){
if (&chord_compare($canon, $c->{’cnotes’})){
RECORD THIS MATCH ALONG WITH A LOWER RANK
}
3
}
SORT THE MATCHES BY RANK
return($sorted_matches) ;
}
Figure 6: Determining Possible Names

Determination of Possible Chord Names

The determination of chord names is where all the difficult work of gfl is performed. Each unique chord in
the song has to be permuted, transformed into a canonical form, and then compared against a table of known
chord forms.

Chords are named as a combination of their root pitch and their quality. A “C major 7” chord (CM7) has “C”
as its root, and “major 7” as its quality. Most of the time, the root of the chord appears on the bottom (i.e. it
is the lowest note played) but there are times when a chord is in inversion (a chord tone other than the root is
on the bottom), or there may be a note on the bottom that seems to not even be a chord tone. In these cases,
you end up with what’s often referred to as a “slash chord”.

A “slash chord” is named as a combination of its root pitch, its chord quality, and a slash followed by the bass
note. For example, a C major chord in first inversion (i.e. E, C, G, as opposed to root position: C, E, G) could
be labelled as the slash chord C/E.

The possibility of slash chords adds slight complexity to the issue of determining the chord name.

The first thing that is done is to separate the pitches into 3 groups: the bottom (a group of one), the rest (all
but the bottom), and a combined group which includes all pitches. Then, the determination of chord names is
attempted in a 3 part permutation phase described below. For each of the parts, each generated permutation
goes through the same process. First, the permutation or “candidate chord”, is put into a canonical form (which




447 +5 b977

E =52 48 0 0 0 0 0 (root)
G=0s shift 04 fold uniq 4 sort normalize 4 (@)

F =77 73 1 1 8 8 10 (7th)

Cc=84 80 8 8 10 10 13 (fat 9th)

“Candidate Chord” to Normalize

I
I
I
D=74 o 70 o 10_ o105 4 14 o8 (ugsm
I
I
: Chord Table Entry

Figure 7: Matching Normalized Chords

is described below), then it is compared against every chord in a table of known chord forms. When a match
is found, it is added to a list of matches and a score is assigned to that match roughly indicating how “good”
this match is. All of the possible names for the permutations generated by a particular chord are then sorted
by their scores and kept for later use.

Permutations

The permutation phase is coded as shown in Figure 6.

The first part of the permutation phase consists of attempting the single permutation generated by choosing
the bottom pitch as root and using the combined group as the pool of remaining chord pitches. This covers the
common case where the bass note is the root of the chord. Matches based on this permutation are given a high
rank.

The second part of the permutation phase involves generating all permutations where each note in the rest
group is tried as the root of the chord, and only the notes in the rest group are used as the pool of remaining
chord pitches. This covers slash chords where the bass note is not a chord tone.

The third part of the permutation phase involves generating all permutations where each note in the rest group
is tried as the root of the chord, but the notes in the combined group are used as the pool of remaining chord
pitches. This covers slash chords where the bass note is a chord tone (i.e. the chord is in inversion).

The heuristic used in ranking the matches is based on ordering the known chord table from “simpler” (e.g.
minor or m) to “more complex” (e.g. diminished 7, flat 13 or dim 7 b13). In addition, matches that are made
during the second or third part of the permutation phase are artificially ranked lower than those made during
the first part. In effect, this leads to gf1 preferring labels where the bass note is the root of the chord and
“simpler” chord namings over “more complex” chord namings.

A Canonical Form

A canonical form is generated from chord pitches as shown in Figure 7. The value of the proposed root (modulo
12) is subtracted from all the other chord pitches. This “shift” causes each pitch to represent its relative interval
away from the root and assumes the root is now pitch 0. Then each pitch is octave folded so that there are no
relative intervals greater than 11. Next, any duplicate pitches are removed. And finally, the remaining relative
intervals are sorted. Note that there are other possible canonical forms, and even for this form these steps don’t
have to be performed in this order.

The table of known chord forms represents pitches in a more user-friendly “relative interval” format which is
normalized once upon startup. For chords that can appear with missing pitches (e.g. it is sometimes common
to leave out the 5th), that chord form must be listed explicitly as its own entry.

Output Formatting

The output file is written in the following manner. First the header text is written as is. Then the chords are
written out according to whichever mode of processing was specified, and finally the trailer text is written as is.




If the analyze option was selected, then the chords are written in a single column where each chord is preceded
by a “comment” section that gives pitch names and all possible names for that chord as determined by gf1l.

Otherwise, the chords are written out using either the name gf1 determined to have the highest score, or if the
keep_names option was invoked, the name that was read in during input. If the program couldn’t determine a
name and no name was given, then the name is left blank. When this happens, the user would probably want
to rerun gfl using the analyze option to see which pitches are being specified and either determine there was
a data entry error (which is most often the case), or that a new entry needs to be added to the table of known
chord forms.

Future Work

There are several features I would like gf1 to have. My first choice would be the ability to generate postscript
or something similar for prettier and more compact printout. The important thing is to not allow page breaks
to occur in the middle of fingering grids, which is what currently happens with the ASCII-based grids.

Guitar tablature enthusiasts would like it if gf1 were made to understand, label, and analyze tablature rather
than just block chords. This would certainly be useful for more melodic guitar pieces as opposed to the mostly
harmonic and rhythmic songs that I play.

However, what I would really like to have is a program that helps analyze chord progressions at a higher level
and can even suggest possible substitutions in order to help spruce up boring progressions (see [Lav91l] and
[Ber95]). Perhaps some descendant of gfl will have that ability some day.

Conclusion

I started work on this program a few years ago in C, before I knew Perl. After modifying data structure handling
and memory management support routines yet again because of design changes in my data structures for the
3rd of 4th time, I stopped altogether due to the tediousness of it all. When I later decided to try again using
Perl, T was very pleased to be able to make several interim changes to my data structures in a mostly painless
way. Many languages like scheme or tcl could have probably fulfilled this need, but quick and dirty regular
expressions and easily composable data structure primitives for lists and associative arrays helped me quickly
get a working prototype. Seeing an early prototype actually do something useful, provided the motivation I
needed to take the time to redo a few things and come up with a mostly complete tool. The quick modify/test
turnaround that Perl provides by combining its compile and run phases greatly speeds up the development
process.

For examples of real songs processed by gfl see:

http://www.etc.ch/”~jason/tabs.html




Appendix A - Representing guitar chords in ASCII

- T T T T T 0T |
iR ,
( Y : — |
. OT5 .
H— O i
O I
C > - O 1
[ [
D o D ' '
Frets
rotate 90°
G6
+—t—t—t+—+—+
0] 2 ~— base fret (i.e. position)
______+_________
o I 0] D o = hold down string here
Frets +—+—+—+—+—+
| o
___..__+_+_..____
___..__+_..__-____
X 0] D x = unused string, O = open string
Strings
Figure 8: Representing guitar chords in ASCII

10



Appendix B - Representing Complex Data Structures in Perl

A multi-layer data structure was presented in Figure 2 which needed to be implemented in perl. There are
many ways to implement such a data structure, but usually one of the better ways to implement arbitrarily
complex data structures is to use perl references to compose the perl list and associate array primitives.

There are simple rules one can use to help decide which of the primitive types are suitable for which pieces
of your data structure. If your collection needs to be ordered, you will want to use arrays. If you want fast
keyword lookup of objects, you will probably want to use associative arrays, etc.

Another choice that has to be made in composing these data structures is whether or not to use references
to objects or the objects themselves. Often references are better because they promote less copying, therefore
being more efficient. Also, references are more easily passed to other subroutines.

For the chord data structures used in gf1, perl lists and associative arrays were composed using perl references.
The chord list needed to be ordered chronologically, which suggested the outermost layer needed to be an array.
However, each chord had attributes which we wanted to be able to access by name rather than implicitly by
index, so each array element was a hash table of attributes (rather than being yet another array).

So in order to iterate through the chord list printing out all the interesting information there is for each chord,
we would access our data structures as shown in Figure 9. You may want to refer back to Figure 2 to remind
you how the data structures are logically shaped.

foreach $chord (@chords){
$chord_info = $uniq_chords->[$chord->{’chord_index’}]

print $chord->{’name’}, "\n";

print join(",", @{$chord->{’lyrics’}}), "\n";

print join(",", @{$chord_info->{’pitches’}}), "\n";

print join(",", @{$chord_info->{’midi_notes’}}), "\n";
print join(",", @{$chord_info->{’possible_names’}}), "\n";
print $chord_info->{’bottom_note’}, "\n";

Figure 9: Accessing Chord Data Structures

11



Appendix C - Basic Harmony

o) o) o
[ ] [ S Q S ]
A PN | A S Q S Q S |
1 £an Y o O © | 1 Zan P2 Q S Q S © © |
[ANIY 4 oo © 1 KP—S Q S < © 1
J o°© J S ]
cdefeabec I ioodi IV Vo vi wil®
C Scale Tones major minor minor major major minor diminished

Figure 10: Simple C Major Triads

Given a key, say C Major, one can construct a chord based on each scale tone in that key (i.e. C, D, E, F, G, A,
B) , merely by starting with the scale tone, and then skipping every other scale tone. If you limit the number
of notes in the chord to 3, you get triads (see Fig 10). While it appears that all the listed triads are symmetric,
they in fact are not. This makes sense when you look at a keyboard and notice that the pattern of white and
black keys is irregular “wbwbwwbwbwbw” and that C major scale tones only refer to the white keys. For example,
there are 3 chromatic pitches (i.e. either scale or non-scale pitches) in between the notes C and E in the first
triad listed (i.e. C#, D, and D+#). However, there are only 2 chromatic pitches in between the notes D and F
in the second triad listed (i.e. D#, and E - because E# is the same pitch as F).

These asymmetries lead to the chords being labelled differently. If the number of pitches between the 3 notes
in a triad are 4 followed by 3, this is labelled a major triad. If the number of pitches between the 3 notes in a
triad are 3 followed by 4, this is labelled a minor triad. For completeness, (3, 3) is labelled a diminished triad,
and (4, 4) is labelled an augmented triad.

It turns out that nearly all songs can be harmonized (albeit simply) using only the triads constructed from the
scale tones. In fact, a great many songs can be harmonized using only 3 of the constructed triads - I, IV, and V
(it is no coincidence that these 3 triads cover all the scale tones). For example, here is a simple harmonization
for the Happy Birthday song:

1 A%

Happy Birthday to You

\Y 1

Happy Birthday to You

I v

Happy Birthday dear Pathologically Eclectic Rubbish Lister
v I VI

Happy Birthday to You

If instead of limiting your chords to triads (i.e. 3 notes each), you constructed chords of 4 notes using the same
technique (skipping every other scale tone), you would end up with what are known as the diatonic 7th chords
- which often give more interesting harmonies.

Just as we did with triads, you can also classify 7th chords based on the relative distances between each of the
4 notes (See Figure 11).

Even richer harmonies can be obtained by using 5 or more notes, especially if you don’t limit yourself to using
only scale tones. Learning how to construct these more complex chords in a way that makes them sound good
when played in a series is what music theory is all about (see [Ott84] and [Hea80]).

12



REFERENCES REFERENCES

distance from root A pitches name
(0,3,6,9) (3,3,3) | C, Eb, Gb, Bbb C diminished 7 (dim7)
(0,3,6,10) (3,3,4) | C,Eb, Gb, Bb | C half diminished 7 (m7 b5)
(0,3,7,10) (3,4,3) C, Eb, G, Bb C minor 7 (m7)
(0,3,7,11) (3,4,4) C, Eb, G, B C minor #7 (m #7)
(0,4,7,10) (4,3,3) C, E, G, Bb C dominant 7 (7)
(0,4,7,11) (4,3,4) C E G,B C major 7 (M7)
(0,4,8,10) (4,4,3) C,E, G#, B C augmented 7 (7 +5)
(0,4,8,12) (44,4) | C,E, G#, B# C whole tone 7?7 (+7 +5)

Common Chords with distances including 5 or 2
(0,5,7,10) (5,2,3) C,F, G, Bb C 7 suspended 4 (7 sus 4)
(0,4,6,10) (4,2,4) C, E, Gb, Bb C 7 flat 5 (7 b5)
Figure 11: Classification of 7th chords

Appendix D - A Complete Song

Perl Happy Birthday Song

(traditional)

arranged by
Jason Brazile

Bsus 4/G Am6 D9 G6 GM7
ol 11113 Ilollla Ilollla Ilolllz olllol3
T I ; ; [ I ; | I oo | I oloo I ol | I ; I I I ; ; T I
11 1ol [ I I I [ | 1 loll e
R R e R R R R AR

X X X X X X b4 X b4 X
Happy you Happy Birthday to you Happy Birthday
Birthday Pathologic-
to -ally

Eclectic
A# dim7 b13 A# dim7 Am7 Adim7 G69
ol I 11 ol I 11 oloool5 | lolol4d oll I 13
[ 1T1Teo 1lllol TILITL olloll Illoll
PEIUIT Lt bl Tiiil dlolloeo
[ O I B [ A e e e
x x0  x x0 0 x x x x  x
Rubbish Lister Birthday to you
Happy

This arrangement Copyright(c) 1998 by Jason Brazile

References

[AUT77] Alfred V. Aho and Jeffrey D. Ullman.

Massachusetts, 1977. ISBN: 0-201-00022-9.

Principles of Compiler Design.

AddisonWesley, Reading,

[Ber95] Arnie Berle. Understanding Chord Progressions for Guitar. Amsco Publications, New York, NY, 1995.
ISBN: 0-8256-1488-0.

13



REFERENCES REFERENCES

[DS89] Steve DeFuria and Joe Scacciaferro. MIDI Programmer’s Handbook. M&T Books, Redwood City,
California, 1989. ISBN: 1-55851-068-0.

[Hea80] Dan Hearle. The Jazz Language - A Theory Text for Jazz Composition and Improvisation. CPP /Belwin
Inc., Miami, Florida, 1980.

[Lav9l] Andy Laverne. Handbook of Chord Substitutions. Ekay Music Inc, Katonah, NY, 1991. ISBN: 0-943-
48-51-8.

[Ott84] Robert W. Ottman. Advanced Harmony. Prentice-Hall, Englewood Cliffs, New Jersey, 1984. ISBN: 0-
13-011370-0.

14



